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ABSTRACT: Formation of complex Frank—Kasper spherical
phases from the self-assembly of block copolymers has
attracted renewed interest. In this work, we have studied the
emergence and stability of the Laves phases (C14 and C15),
belonging to the class of Frank—Kasper phases, in the binary
blend of AB, miktoarm star block copolymers and A-
homopolymer using self-consistent field theory. Neat AB,
copolymer with a large conformational asymmetry exhibits a
large spherical phase region consisting of four different
spherical phases: the face-centered-cubic (FCC), body-
centered-cubic (BCC), and Frank—Kasper ¢ and A1S phases.
In contrast, the addition of A-homopolymers into AB,
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copolymers leads to the formation of new Frank—Kasper phases, i.e., the Laves phases of C14 and C1S. Our work unveils
that the Laves phases with more nonuniform domains than the ¢ and A1S phases are mainly stabilized by the redistribution of
A-homopolymers among different A-domains that reduces the interfacial energy between the A-homopolymers and the B-blocks
of AB,. At the same time, it implies that the conformational asymmetry should not be necessary for the formation of the Laves

phases.

B INTRODUCTION

Particle packing has been attracting long-standing interest as it is
ubiquitous in our daily life as well as in industry. The simplest
well-known packing problem is the ideal model of uniform hard
spheres that pack into the hexagonally close-packed (HCP)
crystalline lattice." In practice, particles are not ideally hard, i.e.,
deformable and nonuniform. These two factors of particles
could impact their packing behaviors significantly. For example,
it has been revealed that highly deformable bubbles of equal size
form the Frank—Kasper A15 lattice,” which is in contrast to the
HCP packing lattice of uniform hard spheres. Even for hard
spheres of nonuniform sizes, the packing problem also becomes
very complicated, which could lead to different crystalline
structures.

As the simplest polydisperse system of particles, the binary
blend of hard spheres has been intensively studied.”™> Many
interesting crystalline structures are observed, of which the
Laves phases are particularly attractive. Laves phases, generally
composed of large (L) and small (S) particles in the form of LS,,
belong to the class of Frank—Kasper phases and are topologically
close-packed structures.”” L and S particles sitting in the centers
of a 16-particle Frank—Kasper polyhedron and an icosahedron
have coordination numbers (CN) of 16 (4 L and 12 S particles)
and 12 (6 L and 6 S particles), respectively.” The closest packing
of hard spheres of L and S is obtained for the radius ratio r; /rg =
(3/2)"2° In fact, Laves phases are originally observed in
metallic alloy crystals.”® The radius ratio of metallic atoms also
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plays an important role in the formation of crystalline structures
in binary metallic alloys apart from other factors such as valence
electron numbers and electronegativities.” Binary intermetallic
compounds can form a large number of Laves phases due to
largely variable properties of metallic atoms, which provide the
prototypical structures for other particle systems.” According to
the stacking sequences of L/S layers of particles, Laves phases
can be divided into different polytypes such as C14 and C13.
The thermodynamic stability of the Laves phases is a
complicated and unsolved problem in intermetallic compounds
because it is dictated by multiple factors.'”""

Very recently, the spherical Laves C14 and C15 phases were
observed in the self-assembly of poly(isoprene)-b-poly(lactide)
(PI-b-PLA) diblock copolymer melts annealed under a special
thermal process.'” The self-assembly of block copolymers
provides an excellent model for one to probe into the formation
mechanism of complex crystalline structures in soft matter
systems because of the great advances in experiment and
theory."”™'® In experiment, modern synthesis techniques can
make block copolymer with precisely controlled topology and
composition. At the same time, a powerful self-consistent field
theory (SCFT) based on the Gaussian-chain model as well as its
efficient numerical methods has been built up.19 On one hand,
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SCFT can accurately calculate the free energy of different
ordered phases and thus identify their relative stability. On the
other hand, it can calculate the different contributions of the free
energy and the distribution of each segment of the copolymer,
which is critical to revealing the self-assembly mechanism of
every ordered structure.

In the past decades, great success has been achieved in
understanding the formation mechanism of complex ordered
phases in block copolymers via the concerted interplay between
experiment and SCFT. One recent example is about the
formation of Frank—Kasper 6>°~** and A15*****'7** phases in
various block copolymer systems. Inspired by the experimental
discovery of the ¢ phase in PI-b-PLA copolymers,”® SCFT
reveals that the ¢ phase is stabilized by the conformational
asymmetry between the two blocks.”»** Furthermore, the
theoretical work has proposed that the conformational
asymmetry can be increased in a large extent by branching the
majority blocks, i.e., forming AB, miktoarm star copolymer with
n the number of arms. With a large conformational asymmetry
such as n > 3, a general spherical phase sequence from FCC to
BCC, 0, and AlS is predicted.23 Encouragingly, the mechanism
of conformational asymmetry is confirmed by further experi-
ments in which three diblock copolymers with different degrees
of conformational asymmetry are ingeniously designed.*

Bates and co-workers have proposed that the formation of the
spherical phases is dictated by the competition between the
tendency to form spherical domains and the need to uniformly
fill the space under the constraint of the crystalline lattice.”” In
other words, the shape of each minority domain deforms from
spherical under the influence of the polyhedral shape of its
Wigner—Seitz (WS) cell, which in return increases the interfacial
energy. Larger domain, which could be formed in conformation-
asymmetric copolymers, usually exhibits larger deformation.”***
To lower the interfacial energy, domains tend to pack into the
crystalline lattice with rounder shape of WSCs, which is
quantified by the isoperimetric quotient (IQ), IQ = 367v%/s°,
where v and s are the volume and surface area, respectively.**
The average values of IQ (IQ) of FCC, BCC, 6, and AlS are in
the ascending order, which qualitatively rationalizes their
appearance sequence in the phase diagram.’® In contrast to
the classical FCC and BCC lattices, the formation of the
complex ¢ and AlS lattices containing two or more non-
equivalent domains with different sizes and shapes should be
unfavored by entropy. The ¢ and A15 phases are stabilized only
when the gain in the interfacial energy could compensate for the
energy penalty from the loss of entropy.

On the basis of the above argument about the formation of
Frank—Kasper phases, Liu et al. proposed a simple binary blend
composed of two different conformation-symmetric AB diblock
copolymers (AB/A’B’) to target the complex spherical
phases.””***” By tuning the lengths and compositions of the
two copolymers, one can achieve stable Frank—Kasper ¢ and
A15 phases with considerable parameter windows.”® In contrast
to the mechanism of conformational asymmetry, the Frank—
Kasper phases are stabilized by the local segregation between the
two different diblock copolymers. Specifically, the segregation
occurring along the radial direction and at the interface within
every domain favors the formation of large “core—shell”
domains of nonspherical shape, whereas the segregation
among the different domains favors the formation of domains
of different sizes. As a consequence, large domains with tunable
shapes are packed into the complex crystalline lattices.
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More surprisingly, besides the ¢ and AlS phases, two new
spherical phases are predicted to be stable in respective large
windows of parameters, i.e., the Laves C14 and C15 phases.*®’
It is necessary to note that IQ of the two phases are intermediate
between the BCC and o phases; however, they do not appear as
stable in the phase diagram of the neat conformation-
asymmetric copolymers which contains both the BCC and ¢
phases.”® This implies that the blending system should provide
an additional effect to that of conformational asymmetry. It has
been observed that the size difference of domains in Laves
phases is usually more pronounced than that in the ¢ or A1S5
phase.”” Although one could speculate that such large size
difference might be realized via the local segregation of the
different copolymers among domains in the AB/A'B’ blend,
there is no direct evidence.

To distinguish the stabilization mechanisms of the Laves
phases from those of the Frank—Kasper A1S and ¢ phases, here
we turn to another simple binary blend composed of highly
conformation-asymmetric copolymers of AB, and A-homopol-
ymers (AB,/A). We mainly focus on the influence of the
addition of A-homopolymers into AB, copolymers on the
packing of A-domains. In general, A-homopolymer has a
tendency to swell every A-domain, enhancing the effective
composition of A—component.38 It is interesting to know
whether the swollen A-domains might pack into complex
crystalline lattices or just simply transform into cylinders. In
particular, if the starting phase is already the complex ¢ or A15
spherical phase, what phase transitions can be triggered by
adding A-homopolymers? In contrast to the AB/A’B’ blend,
there is only one effect from nonuniform distribution of A-
homopolymers among A-domains but no other effects like the
segregation of the two diblocks within each domain in the AB/
A’B’ blend. Whether or not this single effect could result in the
formation of Laves phases is another intriguing question.

B THEORY AND METHOD

The considered binary blend in a volume of V consists of n; and
1, chains of AB, copolymers and A-homopolymers, respectively.
The total number of segments of AB, is specified as N, which
consists of fN A-segments, and that of A-homopolymer is
denoted by Ny = yN. Simply, we assume that all segments have
equal length b and density p,, thus having n,N + n,Ny = Vp, and
the volume fraction of AB,, ¢ = nN/Vp, The repulsive
interaction between A and B components is characterized by the
product of yN with y the Flory—Huggins parameter. The spatial
distributions of volume fractions of A- and B-components, ¢, (r)
and ¢b5(r), are chosen to characterize the ordered phases self-
assembled in this blend. Note that ¢),(r) consists of the volume
fractions of A-blocks (denoted as ¢ (r)) and A-homopolymers
(denoted as ¢y(r)), ie. pa(r) = P(r) + Pu(r).

Under the approximations of the mean-field treatment and
Gaussian-chain model, the free energy in the canonical ensemble
can be expressed as'’
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where wy(r) is the mean-field conjugate to the volume fraction
¢x(r) (K = A or B). The spatial function #(r) is a Lagrange
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Figure 1. Considered candidate ordered spherical phases including the classical FCC and BCC phases as well as four Frank—Kasper phases of 0, A1S,
C14,and C15, formed in the AB,/A binary blend. Moreover, the hexagonal cylindrical phase (C) is considered. For the complex Frank—Kasper phases,
the oblique and top views are given, where different domains at nonequivalent positions are shown in different colors. Note that some domains have an
inner core but the other do not. The inner core is plotted with the isosurface of A-homopolymers at ¢b;(r) = 0.5 for a typical group of parameters (f=
0.32, ¢ = 0.96, and y = 0.4), illustrating the significantly higher content of A-homopolymers in the larger domains (e.g,, the red domain of C14) than in
the smaller domains (e.g., the blue or green domain of C14).

multiplier used to enforce the incompressibility condition, ¢, (r) aqc(r ) S
+ ¢pg(r) = 1. The two quantities Q¢ and Qy are the partition T Vg (x, s) = w(r, s)q.(r, s)
functions of single copolymer chain and single homopolymer s
chain interacting with the mean fields of w,(r) and wg(r), dqg(r, s) - :
respectively. Q¢ and Qy are determined by - T =V qC(r, s) — w(r, S)QC(I'; s)
1 r
Q=17 fdl' 9.(r, )9 (x, 5) 94,(x, ) = V24, (r, 5) — wy(1)q,,(x, 5)
Os 3)
1
Qy = v fdr 4,(x, $)q,(r, 7 = 5) ) In the equations of gc(r,s) and gi(r,s), w(r,s) = wi(r) when s
belongs to K-blocks in the AB, copolymer (K = A or B). In the
Here qc(r,s) and qz(r,s) are the propagator functions of above equations, R, = (N/6)'?b, the radius of gyration of an
segments of the copolymer starting from the free ends of A- and unperturbed linear polymer with N segments, is chosen as the
B-blocks ats =0 and s =f+ (1 — f) /4, respectively, and qy(x;s) is unit of spatial length. Standard initial conditions of the
the propagator function for the homopolymer starting from one propagator functions for the copolymer and homopolymer are
of its two equivalent free ends. These propagator functions used, e.g, gc(r,0) = 1, qi[r, f+ (1 — f) /4] = 1, and gi4(x,0) = 1. At
satisfy the following modified diffusion equations: the junction point of s = f, gc(r,f) X [g-(x,f)]? is set as the initial
1834 DOI: 10.1021/acs.macromol.8b02407

Macromolecules 2019, 52, 1832—1842


http://dx.doi.org/10.1021/acs.macromol.8b02407

Macromolecules

value for solving qc(x,s) along the B-block from the junction
point to the free end at s = f+ (1 — f) /4, while [q{(r,)]*is set as
the initial value for solving qi(r,s) along the A-block from the
junction point to the free end at s = 0.

Minimization of the free energy with respect to ¢¢(r) and
wi(r) leads to the following SCFT equations:

wy(r) = yNepy(r) + n(r)
wy(r) = yNeb, (r) + n(r)

_ i f . 1-¢ 7
¢, (r) = Q. _/0‘ ds qc(r, s)qc(r, s) + —}’QH /0‘ ds

4 (x, $)q (r, v = 5)

3f+1)/4

fol) = 22 ds g.(r, g.(x, 9

Q. Yy 4)

To consider the coexistence of two neighboring phases, we need
to construct the phase diagram using the SCFT calculation in
the grand canonical ensemble, where the free energy is expressed
as

NF
Vp ks T

+ = [UNGED,0) = a1, 0) = o)y (o)

= n(0)[1 = ¢, (r) — ¢y(r)]} (s)

where zy = exp(uy/kgT) is the activity. Here the single-chain
partition functions of the two polymers, Q¢ and Qy, have the
similar expressions to eqs 2 in the canonical ensemble. And the
propagator functions satisfy the same modified diffusion
equations as eqs 3.

Minimization of the grand canonical free energy with respect
to the distributions of volume fractions and the mean fields leads
to the following SCFT equations:

wy (r) = YNy (r) + n(r)
wy(r) = yNe, (r) + n(r)

f v
¢, (r) = /(; ds qc(r, s)qg(r, s) + ZH/O ds
4y, (x, )q(r, ¥ — 5)

- QC - ZHQH

=4 [ as g 0 90w 9
r=4/ ds q.(r, s)q . (x, s
B f C C (6)
In the grand canonical ensemble, the spatial average
concentration ¢ is conjugated to z,, thus determined by

¢ = Q—C =10 - ZHyQ,H (7)

In either canonical or grand canonical ensemble, the SCFT
equations can be solved numerically using a standard iteration
scheme. Here we employ the second-order pseudospectral
method® to solve the modified diffusion equations and
implement the Anderson mixing iteration scheme™ to speed
up the converging process toward the equilibrium solutions of
SCFT. Although a fourth-order pseudospectral method gives a
better accuracy,”’ it has been shown that the second-order
pseudospectral method with a fine grid spacing and contour step
size can give reliable accuracy of the free energy. In our
calculations, the grid spacing is chosen to be smaller than 0.15
by using a lattice of 128 X 128 X 64 for the 6 and C14 phases, 96
for the C15 phase, 64° for the other 3D phases (FCC, BCC, and
A15), and 64 for the 2D cylindrical phase. The contour step size
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is set up as As = 0.01. For each ordered phase, we carry out the
unit cell calculations to determine the free energy. Furthermore,
the free energy is minimized with respect to the unit-cell
dimensions.”>*’

B RESULTS AND DISCUSSION

In this work, we mainly focus on the impact of the addition of A-
homopolymers into the AB, copolymers on the formation of
different spherical phases. Accordingly, we consider two classical
spherical phases of FCC and BCC together with four Frank—
Kasper phases of o, AlS, Cl14, and C15 (Figure 1). As the
cylindrical phase is often a neighbor to the spherical phases, the
hexagonal cylindrical phase (C) is also considered for
determining the phase boundary of the spherical phases when
constructing the phase diagrams. To illustrate the distinguish-
able characteristics of different Frank—Kasper phases, we list
their characteristic parameters in Tables 1—4, respectively,
including the occupancy (np) of each kind of particle, the
number of faces (ng), the relative volume (1), and the
approximate IQ value of each WS cell.

Table 1. List of Information of the Polyhedral Wigner—Seitz
(WS) Cells in the Frank—Kasper & Crystalline Lattice Whose
Unit Cell Contains Five Kinds of Particles (k = 1, 2, ..., §),
Including the Occupancy (np) of Each Kind of Particle, the
Number of Faces (ny), the Relative Volume (1), and the
Isoperimetric Quotient (IQ) of Each WS Cell”

Particle

Category (k) ! 2 3 4 5
np 4 8 8 8 2
ng 15 14 14 12 12

Vws 1.068 1.028 1.006 0.950 0.925

1Q 0.782 0.765 0.769 0.745 0.747

IS PO

“Note that the data of g and IQ are slightly dependent on the size
ratio of the unit cell.

Wigner-Seitz
Cell

The phase behavior of the AB,/A binary blend is mainly
controlled by the four parameters yN, f, 7, and ¢. To focus on the
effect of A-homopolymers on the phase behaviors, we calculate
the y—¢ phase diagrams in Figure 2 by choosing different
starting spherical phases of the neat AB, copolymers: (a) FCC
with (f, ¥N) = (0.2, 35), (b) o with (0.28, 35), and (c) A1S with

Table 2. List of Information of the Polyhedral WS Cells in the
A1S Phase

Particle 1 2
Category (k)
np 6 2
ng 14 12
Vs 1.008 0.977
1Q 0.766 0.749
Wigner-Seitz .‘.\ '.\’
Cell - / '/
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Table 3. List of Information of the Polyhedral WS Cells in the
C14 Phase

Particle
Category (k) 1 2 3
np 8 4 12
ng 16 12 12
Vs 1.139 0.937 0.928
1Q 0.810 0.739 0.736
7 ]
‘Wigner-Seitz /“\ ..\ .\
Cell \. , .‘ .

Table 4. List of Information of the Polyhedral WS Cells in the
C15 Phase

(‘,al:;glz:*c;e(k) 1 2
np 8 16
ng 16 12
Vys 1.142 0.929
1Q 0.810 0.737
Wigner-Seitz /'.'\ "
Cell \‘ A Oz

(0.32, 35). Each transition point is identified using SCFT in the
grand canonical ensemble. It is essential to mention that we have
verified that the C14 and C15 phases are not stable in the neat
AB, copolymers for a fixed yN = 35 (Figure S1).

Surprisingly, each phase diagram with whatever starting phase
exhibits considerable stability regions of the C14 or C1S phase.
In Figure 2a, the spherical phase transfers from the starting FCC
phase going through ¢ to C14 as A-homopolymers are added,
while the another Laves phase of C15 is observed in the phase
diagrams of Figure 2,b,c with larger length ratios of A-blocks in
the AB, copolymer. It is well-known that the addition of A-
homopolymers can increase the effective volume fraction of A-
component by swelling the A-domains at a limited extent, and
otherwise it usually causes macroscopic phase separations in the
form of the coexistence of the copolymer-rich ordered phases
and the homopolymer-rich disordered phase.‘?’8 Obviously, the
transition from the spherical A15 phase to the cylindrical phase
(C) in Figure 2c is mainly induced by the increasing effective
volume fraction of A-component. In fact, the phase transition
from FCC to ¢ may be also induced by a similar mechanism
because the o phase is observed in the region of larger volume
fraction than FCC. However, the transition between the ¢ phase
and the C14/C15 phase in Figure 2a,b or between the A15 phase
and the o phase in Figure 2¢ cannot be solely explained by this
simple mechanism based on the change of the effective volume
fraction.

Another important parameter controlling the self-assembly
behavior of the binary blend is the length of the A-
homopolymer. An obvious effect on the phase diagram as y
increases lies in expanding the biphasic region. In other words,
the uptake of A-homopolymers by these ordered phases
decreases as the length of A-homopolymer increases, which is
induced by the increasing entropy loss of A-homopolymer due
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Figure 2. Phase diagrams plotted in terms of the copolymer volume
fraction ¢ and the length ratio y of the A-homopolymer to the AB,
miktoarm star copolymer for the AB,/A binary blend with yN = 35 and
(a) f=02, (b) f=0.28, and (c) f= 0.32. The coexistence region of two
neighboring phases is labeled as “2-phase”.

to the confinement of A-domain. However, a more remarkable
feature lies in these interesting phase sequences along changing y
for a fixed volume fraction of A-homopolymers. For example,
when 1.5% volume fraction of A-homopolymers (i.e., ¢ = 0.985)
is added into the FCC-forming AB, copolymers, the stable phase
becomes o for y < 0.25 while it becomes the Laves phase of C14
for 0.25 < y < 0.3 (Figure 2a). The phase transition from ¢ to
C14 is evidenced by the typical free energy comparison for ¢ =
0.985 in Figure S2. Note that the difference of free energy
density between the different spherical phases is typically at the
order of NAF/p,V = 10~*k5 T, so the phase transition is sensitive
to the calculation accuracy of free energy. Usually, the numerical
accuracy of free energy is dependent on two critical factors: the
size of grid lattice N, X N, X N, and the contour step size As. To
demonstrate the reliable accuracy, we calculate the typical
transition point between the ¢ phase and the C14 phase in
Figure S2 with different lattices and contour step sizes. The
results are provided in Table S1, indicating that the lattice size of
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N, X N, X N, =128 X 128 X 64 and the contour step size As =
0.01 are enough for achieving reliable accuracy with the
determined transition points in the phase diagrams.

Similar phase sequences such as 6 — C14/C1S in Figure 2b
and AlS = ¢ — CI1S in Figure 2c are observed. Typical free
energy comparisons for these phase transitions are given in
Figures S3 and S4. It is important to conclude that less amount
oflonger A-homopolymers is needed to drive the transition from
the FCC/o/AlS phase to the Cl14 or C15 phase. Very
surprisingly, the stable phase changes from the cylindrical
phase (C) to the different spherical phases (A1S, 6, or C15) as y
increases in Figure 2c. This observation suggests that the
stability of spherical phases relative to the cylindrical phase is
enhanced by increasing the length of A-homopolymer. More
detailed explanations are provided later.

As mentioned above, these complex Frank—Kasper spherical
phases not only have larger domains than the classical FCC and
BCC phases but also have more kinds of nonequivalent domains
with different sizes. Accordingly, controlling the size distribution
of domains serves as an additional sophisticated mechanism for
stabilizing the Frank—Kasper phases.37 Thus, one could
speculate that y should be a critical factor of controlling the
size difference of domains for a given volume fraction of A-
homopolymer, thus dictating the relative stability between these
Frank—Kasper phases with distinguishable size differences of
domains. To verify this speculation, we calculate the average
value and the relative standard deviation of volumes of the
different domains within the unit cell for these spherical phases
along a few typical phase paths, v4,, and

— L Namn (i = )2 /= o1
5, = KZI (Vimn — W) /Wi Where Ny indicates

the number of domains within the unit cell, e.g., Ny, = 30, 8, 24,
and 24 for o, A1S, C14, and C15, respectively. The volume of
each domain is integrated over the space within its enclosing
isosurface at ¢,(r) = 0.5. Note that there is only one kind of
domain in the classical FCC and BCC phases, and thus 6, = 0.

The change of &, of the four Frank—Kasper phases (i.e., o,
A1S, C14, and C15) along the phase path of ¢ = 0.985 in Figure
2 is provided in Figure 3. It is shown that §,(C14) =~ §,(C15) >
5,(c) > 8,(A15). Furthermore, as y increases, §, of the two Laves
phases increases more rapidly than the other two phases. This
observation indicates that the size difference increased by the
lengthened A-homopolymers at a fixed concentration should
play a critical role in stabilizing the Laves phases. More

0.3 — T — T T
—.—.—-—_—-——g"—__‘_—::
0.2 ; ——o J
: ——C14
: ——CI5

0.0 1 1 L L 1 L
020 022 024 026 028 0.30

e

Figure 3. Variation of the relative standard deviation of volumes of the
different domains within the unit cell of the four complex phases of A1,
0,C14,and C1S, §,, for f= 0.2 and ¢p = 0.985. The dashed line indicates
the transition from o to C14.

importantly, the size differences of domains in these complex
phases are significantly increased relative to those in the neat
AB, copolymers by adding A-homopolymers (Figure 4).

0.4

03F

0.2}

-0.1 1 I I I
0.96 0.97 0.98 0.99 1.00

¢

Figure 4. 6, of the o and C14 phases along changing ¢ for f=0.2 and y =
0.26. The two dashed lines indicate the transition sequence of FCC — o
— C14 along decreasing ¢. Note that the horizontal solid line indicates
6, = 0 for FCC.

Similarly, large size differences of domains are also observed in
the Laves phases formed by the AB/A’B’ blend.”” In addition,
the average domain sizes of different phases for the same group
of parameters are different, for example, Ty,,,(A1S) > Vg, () >
Tgmn(C15) ~ Ty, (C14) (Figure S). Kim et al. have observed the
considerable difference of the domain densities or equivalently
the average domain sizes between the BCC and C14 phases.' >’
Very interestingly, the content of A-homopolymers in the
different domains of each phase, iy, varies in different trends as
y increases (Figure 6). ¢} increases when the volume of domain
i (Vi) is larger than the average volume of domains (vy,,), and
otherwise it decreases. The change of ¢} leads to that v}, > Ty,
increases while v/, < T4,, maintains nearly constant as y
increases.

Nevertheless, it is more important for one to understand how
the size difference or the nonuniform distribution of A-
homopolymers is associated with the free energy. In Figure 7,
we plot the various contributions of free energy in the canonical
ensemble of the different spherical phases relative to the A15
phase along with changing y for fixed ¢ = 0.98S in Figure 2a: the
total interfacial energy NAU/p,VkgT, the entropic contribution
—NAS/pyVkg, the interfacial energy between the A- and B-
blocks of the copolymer NAU,g /poVksT, and the interfacial

energy between the A-homopolymers and B-blocks NAUy 5/
poVksT, of which the expressions are given by

NU 1
pVET  V Jaa@n
— NS —¢ In - Sl n
pVks ?ih Qe "
1
- 5 [ ERE + @y 0)

NU, _1 _
pVksT V. f dr NIy, (r) = ¢y (r) by (x)

NUsw _ 1 [y Db (

VTV J a5, (0 (8)

It is observed that the C14 phase has the most favorable
interfacial energy but the most unfavorable entropic contribu-
tion. As discussed above, the C14 phase has considerably more
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nonuniform domains compared with the o and A15 phases. The among different types of domains, resulting in the loss of
nonuniformity of domains is directly determined by the translational entropy. However, the lower interfacial energy of
nonuniform distributions of the copolymer/homopolymer C14 than o is rather contradictory to its smaller domain size on
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average. There should be another factor benefiting the interfacial
energy, i.e,, the size difference.

Instructively, the interfacial energy AUy, between A-
homopolymers and B-blocks of C14 decreases fast as y increases
though the interfacial energy between the A- and B-blocks goes
down moderately. This suggests that the fast decrease of AUy
must result from the growing 6,. In Figures 8 and 9, we
separately plot the radial distributions ¢(r) of A-blocks, B-
blocks, and A-homopolymers in every domain of the ¢ and C14
phases for y = 0.2 and 0.3, respectively, which are obtained by
averaging ¢b(r) in the spherical shell between r and r + Ar with a
small thickness Ar. From the comparison of the radial
distributions between y = 0.2 and 0.3, we find that the difference
of the A-homopolymer distributions within different domains
becomes more pronounced as y increases. For example, the
difference between the distributions of A-homopolymers in type
1 domain denoted by H(1) and in type S domain denoted by
H(S) for y = 0.3 in Figure 8b is notably larger than those for y =
0.2 in Figure 8a. This feature also exists in Figure 9.

More importantly, the difference of the distributions of A-
homopolymers between the different domains in the C14 phase
is considerably larger than that in the ¢ phase, and it becomes
more pronounced as y increases. For example, the difference
between the smallest domain and the largest domain of the C14
phase in Figure 9b is much larger than that of the ¢ phase in
Figure 8b. In other words, in the C14 phase, more A-
homopolymers are aggregated within the larger domains while
less are within the smaller domains. Obviously, the A-
homopolymers in the larger domains have smaller interaction
area with the B-blocks, thus lowering H/B interfacial energy
(Uyyp)- When the reduced interfacial energy Uy 5 compensates
for the marginal penalty from both the interfacial energy

1840

between the A- and B-blocks and the entropic contribution, the
C14 phase becomes stable over the ¢ phase in Figure 2a. This
argument can also be applied to explaining why adding longer
homopolymers favors stable spheres over cylinders. It is well-
known that spheres have unfavorable interfacial energy in
contrast to cylinders. When the interfacial energy of spheres is
decreased by adding longer homopolymers at the low cost of
entropic contribution due to the feature of nonuniform domains
in the complex spherical phases, spheres become favorable over
cylinders.

Note that the transitions from ¢/A1S5 to C14/C15S in Figure
2b,c along increasing y share the similar mechanism (Figures
S5—S9). In Figures SS and S6, &, and various contributions of
free energy between the ¢ and C15 phases along changing y for
fixed f = 0.28 and ¢ = 0.974 are shown. Similarly, increasingly
larger 6, of C1S than ¢ when increasing y leads to favorable
interfacial energy and thus stabilizes C15 over 6. Moreover, the
mechanism can also be applied for the transitions along adding
A-homopolymers or decreasing ¢b. For example, along the path
of decreasing ¢ for a given y = 0.26 in Figure 2a, FCC transfers to
o at ¢ ~ 0.994 and then to C14 at ¢ ~ 0.986 (Figure S10). In
Figure 4, obviously the values of §, for the C14, o, and FCC
phases are in a descending order, and their differences become
more pronounced as adding A-homopolymers. As a result, their
interfacial energies are in a ascending order for ¢ > 0.995 (Figure
10). When the gain of the interfacial energy compensates the
energy penalty resulting from the loss of entropy, FCC transfers
to ¢ and then to C14.

B CONCLUSIONS

In summary, we have investigated the formation of different
spherical phases from the AB,/A binary blend using SCFT,
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particularly focusing on one category of Frank—Kasper phases,
i.e., the Laves phases (C14 and C1S5). It is observed that the C14
phase could be obtained from the FCC- or o-forming AB,
copolymers by adding A-homopolymers whereas the C1S5 phase
could be formed from the o- or AlS-forming copolymers.
Moreover, the stabilization mechanism of the Laves phases
different from that of the Frank—Kasper ¢ and A1S phases is
unveiled. Our SCFT results indicate that the C14 or C1S phase
has favorable interfacial energy between the A-hompolymers
and the B-blocks (Uy,p) due to the larger size difference of
domains than the ¢ or AlS phase. The C14 or C15 phase
becomes stable over FCC, 6, or Al15 when the reduced
interfacial energy of Uy, could compensate for the energy
penalty from both the interfacial energy between A- and B-
blocks of the AB, copolymers and the entropic contribution.
Furthermore, it is found that longer A-homopolymer drives the
formation of the Laves phases at a lower concentration as it
facilitates nonuniformly distributing A-homopolymers into
different domains and thus favors enlarging their size difference
due to the less loss of translational entropy associated with the
nonuniform distribution of A-homopolymers. The observation
that the Laves phase could be formed from the FCC-forming
AB, copolymers by adding A-homopolymers implies that the
conformational asymmetry should not be necessary for the
formation of the Laves phase. Instead, the second polymer such
as homopolymer or different block copolymer is essential to
modulate the large size difference of the domains in the Laves
phases. Therefore, the formation of the C14/C15 phase in the
AB/A’B’ blend should resemble a similar mechanism. On one
hand, this work provides a simple route to fabricate the
interesting Laves phases. On the other hand, it enhances our
understanding on the formation mechanism of different Frank—
Kasper phases in soft matter systems.
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